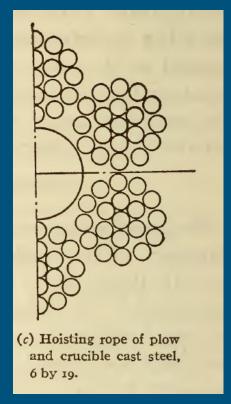
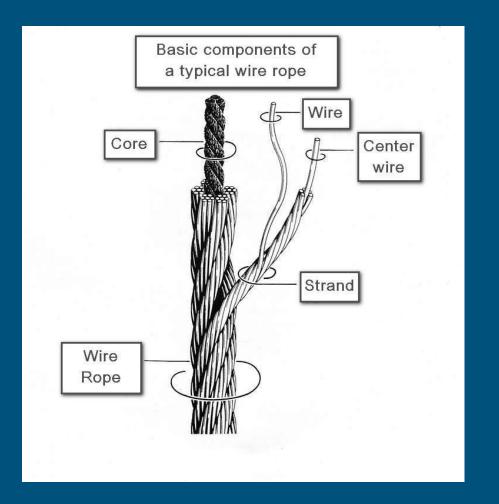
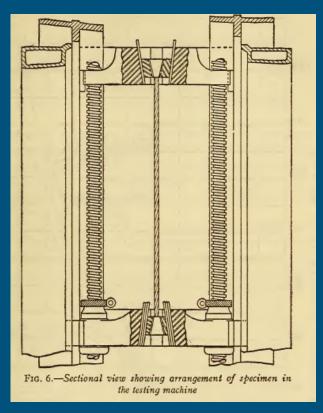

Analysis of Experimental Data


Elizabeth Moran-Williams Zachary Carroll

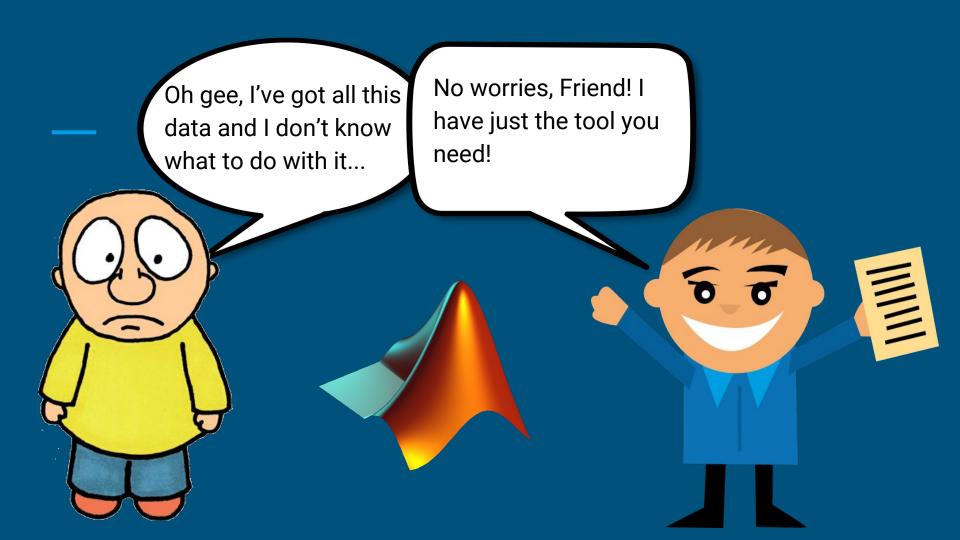

Tensile Strength of Plow-Steel Rope

- The data analyzed for this project comes from a 1919 article entitled "Strength and Other Properties of Wire Rope".
- Used results from multiple tests that observed the maximum amount of pounds that different diameters of 6 by 19 plow steel rope could withstand, then compared it to manufacturer's standard strength.



6 by 19 Wire Rope

Testing the Rope Strength

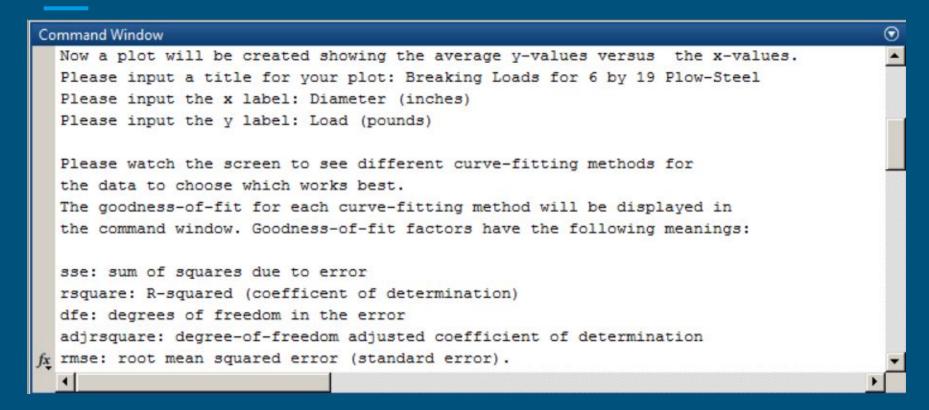

- Tested in a 100,000lb and 600,000lb Olsen
 Machine, which was designed in 1880 and
 the company, Tinius Olsen still specializes in
 manufacturing a variety of testers today!
- Power applied at slower speeds so there was opportunity for the strands and wires to properly bed upon one another while the load was being applied.

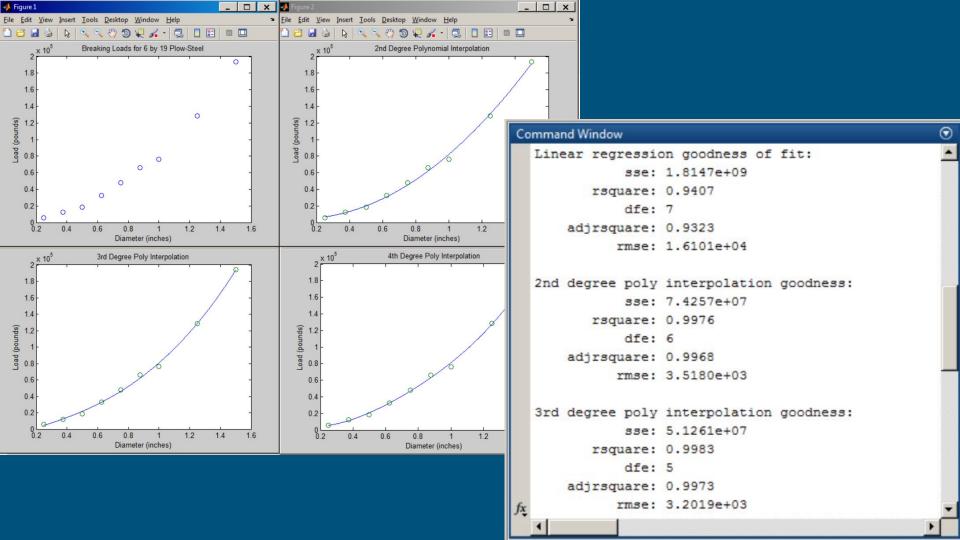
RESULTS

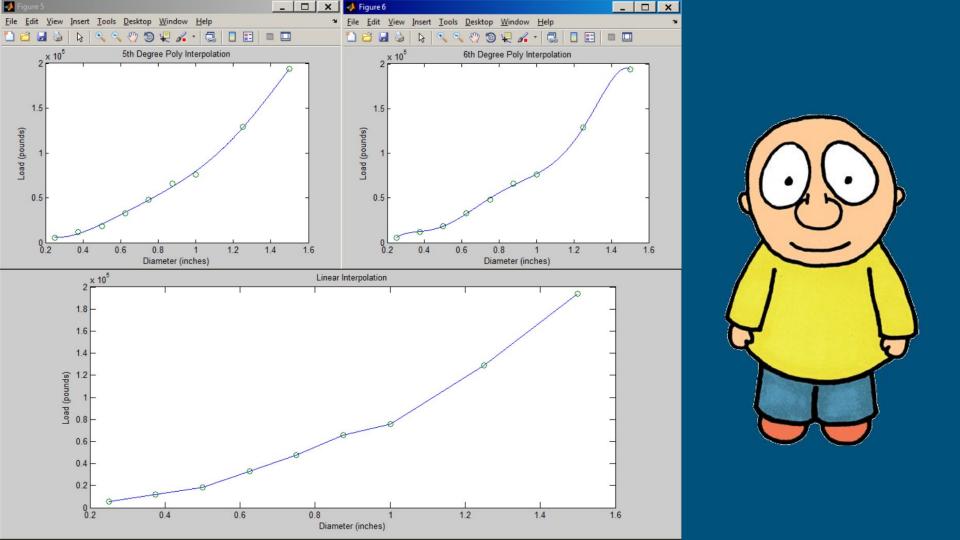
Using nine different diameter sizes, mean results were found for the tests of the loads that caused breaking. These results were compared to the formula L=5000*D^2 as well as the standard sized provided by manufacturer specifications.

TABLE 2.—Relation of Observed Breaking Loads of 6 by 19 Plow-Steel Cables to 1910 Standard Strengths and the Formula L=C 75 000 D^2

	Standard strengths= Isthmian Canal specifica- tions, in pounds	Formula L=C 75 000 D ² C=1	Observed breaking loads from tes		
Diameter, in inches, D			First and second mini- mums	Maxi- mums	Mean
34	5300	4680	5250	5970	5610
			5610		
3/8	11 500	10 550	10 600	13 000	12 140
			12 150	*	
1/2	20 000	18 750	17 900	20 600	18 680
			17 930		1
5.8	31 000	29 300	29 550	35 990	32 760
			29 940		13
34	46 000	42 200	43 500	52 620	47 920
-			44 210		
3/8	58 000	57 400	56 570	72 300	65 800
			58 650		
1	76 000	75 000	75 710	76 270	76 000
1 1 11			76 270		
11/8	94 000	94 900			
13/4	116 000	117 000	108 000	164 800	128 800
1			119 000		
13/8	144 000	142 000			
11/2	164 000	168 750	148 000	233 280	193 940
			163 500		



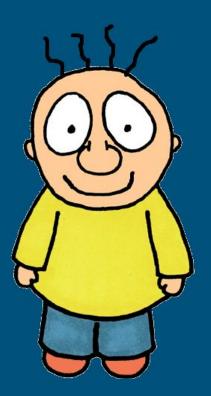

Using Matlab to Analyze Experimental Data


- -User can input the diameters as vector, then the breaking point results as a matrix.
- -Code is designed so it can analyze ANY type of 2D data, not all options are necessary with this particular problem.

```
Command Window
  Please input a vector for your x-values: [(1/4) (3/8) (1/2) (5/8) (3/4) (7/8) 1 (5/4) (3/2)]
  You can now enter a matrix with y-values for multiple trials. The trials will be averaged.
  Example format: [trial 1 ; trial 2 ; trial 3]
  Please input a matrix for your y-values: [5250 10600 17900 29550 43500 56570 75710 108000 148000; 5610 12150 17930 29940
  Would you like to know the sum of your x values? (Enter v or n): v
  Would you like to know the sum of your y values? : n
  Would you like to know the mean of your x values? : n
  Would you like to know the mean of your y values? : y
  Would you like to know the mode of your v values? : n
  The sum of the x values is 7.125000.
  The mean of the average y values is 64627.777778.
  The x values range from 0.250000 to 1.500000.
  The minimum y value input is 5250.000000 and the maximum y value is 233280.000000.
  Now a plot will be created showing the average v-values versus the x-values.
  Please input a title for your plot:
```

Command window asks user to give their plots a title, as well as labels for the x and y axises. It will use this information to create different curves for the data, as well as information on the goodness-of-fit.

Type in the degree to which you would like to find an equation for your data. (6 is the maximum): 4


 $f(x) = 1754.560556 x^4 + 1110.182501 x^3 + 10841.272220 x^2 + 51368.244886 x + 51715.562603$

Command Window

WOW

This isn't 1919 anymore...

• Griffith, J.H., and J.G. Bragg. "Strength And Other Properties Of Wire Rope." Journal Of The Franklin Institute 188.(1919): 123-126. ScienceDirect. Web.

